tensorflow增加层和数据可视化

添加层

1
2
3
4
5
6
7
8
9
10
11
12
import tensorflow as tf

def add_layer(inputs,insize,outsize,activation_function=None)
Weights = tf.Variable(tf.random_normal([insize,outsize]))
biases = tf.Variable(tf.zeros([1,outsize]) + 0.1)
Wx_plus_b = tf.matmul(inputs,Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)

return outputs

完整的一个小例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import tensorflow as tf
import numpy as np


def add_layer(inputs,insize,outsize,activation_function=None):
Weights = tf.Variable(tf.random_normal([insize,outsize]))
biases = tf.Variable(tf.zeros([1,outsize]) + 0.1)
Wx_plus_b = tf.matmul(inputs,Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)

return outputs

x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
y = np.random.random(y_data.shape)
sess = tf.Session()


xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function=None)
# 这里对矩阵按行求和没有什么作用,因为数据每行只有一个实例,还是它本身
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))

数据可视化:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt


def add_layer(inputs,insize,outsize,activation_function=None):
Weights = tf.Variable(tf.random_normal([insize,outsize]))
biases = tf.Variable(tf.zeros([1,outsize]) + 0.1)
Wx_plus_b = tf.matmul(inputs,Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)

return outputs

x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
y = np.random.random(y_data.shape)

xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function=None)
# 这里对矩阵按行求和没有什么作用,因为数据每行只有一个实例,还是它本身
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()
for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
# ax.lines.remove(lines[0])
plt.pause(0.1)

参考:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/

本文标题:tensorflow增加层和数据可视化

文章作者:goingcoder

发布时间:2018年04月06日 - 19:04

最后更新:2018年04月06日 - 21:04

原始链接:https://goingcoder.github.io/2018/04/06/tf5/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

-------------本文结束感谢您的阅读-------------